Power FINFET, a Novel Superjunction Power MOSFET

Wai Tung Ng

Smart Power Integration & Semiconductor Devices Research Group

Department of Electrical and Computer Engineering University of Toronto Toronto, Ontario Canada, M5S 3G4 E-mail: ngwt@vrg.utoronto.ca

© 2011

Outline

Overview of Power Semiconductor Devices

- Design issues for Low Voltage Super-Junction Devices
- A Low Voltage Lateral Super-Junction FINFET
 - Basic Idea of SJ-FINFET Structure
 - Device Simulation Works
 - Process Flow and IC Fabrication
 - Experimental Results

Summary

VEUT

ARBOR

Applications of Smart Power ICs

Worldwide Power Semiconductor Market

Source: M. Vukicevic, Data Processing Market to Dominate Power Semiconductor Market in 2007: Market Tracker, iSuppli Corp., Q1, 2007.

University of Toronto

VEUT

ARBOR

5

HVNMOS process (cont'd)

Another example of CMOS compatible HV-CMOS with a variety of 40V devices with minimal process

ARBOR

Lateral Super-Junction Power MOSFETs

Super-Junction (SJ) power MOSFET is a promising device to achieve a low R_{on,sp} because the drift region is composed of heavily doped alternating n/p-pillars. However, conventional SJ structure is not very attractive for low voltage MOSFETs (<100V) due to the fact that the channel resistance becomes comparable to the drift region resistance at low voltage ratings.

Impact of the p/n pillar thickness

Features of Super-Junction MOSFETs

- Drift region structure: n-drift region replaced by alternatively stacked, charge-coupled/heavily doped, n- and p- thin layers or pillars.
- Low specific on-resistance: Current flow only through the heavily doped parallel n-pillars.
- High breakdown voltage: requires full-depletion of SJ structures (a space-charged region, acting like a pure intrinsic layer); simply depends on drift region length; independent on dose.
- Charge counterbalance condition: controlling the doping of p- and n-type SJ layers according to the RESURF theory.

Fabrication process: complicated and need precise process controls. University of Toronto

Lateral Power Devices - Performance

BV vs. R_{on-sp} has been a performance matrix that many researchers have been chasing for years.

R_{on-sp} for power devices in the low voltage range (<100V) depends on many factors.

Main Issue: Low Voltage SJ-MOSFETs

ARBOR

Basic Idea of SJ-FINFET Structure

2.5

1.0

SJ unit-cel

 $\mathsf{W}_{\mathsf{sic}}$

Proposed Lateral SJ-FINFET Structure

Cross-section: A-A'

0.3 0.3

 \overline{W}_{top}

p-body

BOX

Cross-section: B-B'

W_n 0.3 0.3 0.3

W_{top}

SJ unit-cell

0.6

Poly-Si

↓ T_{Gox} ↑0.035

0.3

DT

W_n

p-drift

 (S_p) (S_n)

SJ unit-cell[±]

n-drift

BOX

Compatibility with modern CMOS process is an essential design consideration

 W_{side}

2.5

0.5 0.5

SJ unit-cell

Process Flow for the SJ-FINFET Structure

University of Toronto

ARBOR

Parameters for 3D Simulations

These	Parameters	Values
parameters	Drift length, L _{drift} (µm)	3 to 12
	n-drift width, W _n (μm)	0.6
were also used	n-drift doping conc., N _D (cm ⁻³)	$7.4 imes10^{16}$
in the	p-drift width, W _p (μm)	0.3
fabrication of	p-drift doping conc., N _A (cm ⁻³)	7.4 to $9.8 imes 10^{16}$
the prototypes.	p-body doping conc., N _{p-body} (cm ⁻³)	$5.0 imes10^{17}$
	p-substrate doping conc., N _{sub} (cm ⁻³)	$2.0 imes10^{14}$
	n+ source/drain contact, N _{s/d} (cm ⁻³)	$1.0 imes 10^{20}$
	p+ contact, N _{p+} (cm ⁻³)	$5.0 imes10^{19}$
	Gate oxide thickness, T _{Gox} (nm)	35
	Top channel width, W _{top} (µm)	0.6
	Side channel width, W _{side} (µm)	2.0 and 3.0
	Gate length, L _{gate} (µm)	1.0
	Channel length, L _{ch} (µm)	0.5
	SOI thickness, T _{epi} (µm)	2.6 and 3.6
	DTI depth (μm)	2.0 and 3.0
	Buried oxide thickness, T_{box} (µm)	2.0

14

SJ-FINFET — Initial MESH Structure

University of Toronto

EVO

VEUT

ARBOR

Formation of the p/n pillars

VEUT

ARBOR

Formation of the n+ source/drain contacts

17

SJ-FINFT — Device Simulation Results

SJ-FINFT — Device Simulation Results (cont'd)

VEUT

ARBOR

VEUT

ARBOR

SJ-FINFT: Device Simulation Results

SJ-FINFT — Device Simulation Results (cont'd)

20

Final Chip Layout & Die Image

EVO

ARBOR

VEUT

Fabricated SJ-FINFETs: Optical & SEM Images

SJ-FINFETs: After AI-Metallization

University of Toronto

ARBOR

Measured Data: Transfer I-V Characteristics

► L_{drift}=3.5µm, W=200µm, T_{ox} = 35nm @ V_{ds} = 0.1V

24

Measured Data: Output I-V Characteristics

The R_{on,sp} of the SJ-FINFET is approximately 30% smaller than that of the conventional SJ-LDMOSFET.

University of Toronto

ARBOR

Measured Data: BV versus R_{on,sp}

The measured data is comparable with other published data and it shows a good agreement in the data trend between the simulation and measurement. For similar BV ratings, about 30% lower $R_{on,sp}$ was found in the fabricated

Data from [1], [3], [7] are for conventional LDMOSFETs

Data from [2], [4]-[6] are for conventional SJ-LDMOSFETs

University of Toronto

Summary

- Low voltage lateral SJ-FINFET devices with deep trench p-drift region were proposed and fabricated to improve the electrical characteristics of conventional planar gate SJ-LDMOSFETs.
- For the similar BV ratings, the specific on-resistances of the fabricated SJ-FINFET devices were approximately 30% lower than that of the fabricated SJ-LDMOSFETs.
- The current work represents the first experimental confirmation that the super-junction concept is advantageous for sub-200V applications.

More details will be presented at IEDM 2010.

Acknowledgements

Visiting Scientist: Yasuhiko Onishi, Fuji Electric, Japan

- Prof. Johnny K. O. Sin, Hong Kong University of Science & Technology
- Staff in Nano-electronic Fabrication Facility (NFF), Hong Kong University of Science & Technology
- Auto21 Networks of Centres of Excellence of Canada
- Natural Sciences and Engineering Research Council of Canada
- U of T Open Fellowship

